
SOCKET(2) Linux Programmer’s Manual SOCKET(2)

NAME
socket − create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communication domain; this selects the protocol family which will be
used for communication. These families are defined in <sys/socket.h>. The currently understood formats
include:

Name Purpose Man page
PF_UNIX,PF_LOCAL Local communication unix(7)

IPv4 Internet protocolsPF_INET ip(7)
IPv6 Internet protocolsPF_INET6
IPX − Novell protocolsPF_IPX

PF_NETLINK Kernel user interface device netlink(7)
ITU-T X.25 / ISO-8208 protocolPF_X25 x25(7)

PF_AX25 Amateur radio AX.25 protocol
Access to raw ATM PVCsPF_ATMPVC
AppletalkPF_APPLETALK ddp(7)

PF_PACKET Low lev el packet interface packet(7)

The socket has the indicated type, which specifies the communication semantics. Currently defined types
are:

SOCK_STREAM
Provides sequenced, reliable, two-way, connection-based byte streams. An out-of-band data trans-
mission mechanism may be supported.

SOCK_DGRAM
Supports datagrams (connectionless, unreliable messages of a fixed maximum length).

SOCK_SEQPACKET
Provides a sequenced, reliable, two-way connection-based data transmission path for datagrams of
fixed maximum length; a consumer is required to read an entire packet with each read system call.

SOCK_RAW
Provides raw network protocol access.

SOCK_RDM
Provides a reliable datagram layer that does not guarantee ordering.

SOCK_PACKET
Obsolete and should not be used in new programs; see packet(7).

Some socket types may not be implemented by all protocol families; for example, SOCK_SEQPACKET
is not implemented for AF_INET.

The protocol specifies a particular protocol to be used with the socket. Normally only a single protocol
exists to support a particular socket type within a given protocol family. Howev er, it is possible that many
protocols may exist, in which case a particular protocol must be specified in this manner. The protocol
number to use is specific to the “communication domain” in which communication is to take place; see
protocols(5). See getprotoent(3) on how to map protocol name strings to protocol numbers.

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. They do not preserve
record boundaries. A stream socket must be in a connected state before any data may be sent or received on
it. A connection to another socket is created with a connect(2) call. Once connected, data may be

Linux Man Page 1999-04-24 1



SOCKET(2) Linux Programmer’s Manual SOCKET(2)

transferred using read(2) and write(2) calls or some variant of the send(2) and recv(2) calls. When a ses-
sion has been completed a close(2) may be performed. Out-of-band data may also be transmitted as
described in send(2) and received as described in recv(2).

The communications protocols which implement a SOCK_STREAM ensure that data is not lost or dupli-
cated. If a piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered to be dead. When SO_KEEPALIVE
is enabled on the socket the protocol checks in a protocol-specific manner if the other end is still alive. A
SIGPIPE signal is raised if a process sends or receives on a broken stream; this causes naive processes,
which do not handle the signal, to exit. SOCK_SEQPACKET sockets employ the same system calls as
SOCK_STREAM sockets. The only difference is that read(2) calls will return only the amount of data
requested, and any remaining in the arriving packet will be discarded. Also all message boundaries in
incoming datagrams are preserved.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents named in
send(2) calls. Datagrams are generally received with recvfrom(2), which returns the next datagram with
its return address.

SOCK_PACKET is an obsolete socket type to receive raw packets directly from the device driver. Use
packet(7) instead.

An fcntl(2) call with the the F_SETOWN argument can be used to specify a process group to receive a
SIGURG signal when the out-of-band data arrives or SIGPIPE signal when a SOCK_STREAM connec-
tion breaks unexpectedly. It may also be used to set the process or process group that receives the I/O and
asynchronous notification of I/O events via SIGIO. Using F_SETOWN is equivalent to an ioctl(2) call
with the SIOSETOWN argument.

When the network signals an error condition to the protocol module (e.g. using a ICMP message for IP)
the pending error flag is set for the socket. The next operation on this socket will return the error code of
the pending error. For some protocols it is possible to enable a per-socket error queue to retrieve detailed
information about the error; see IP_RECVERR in ip(7).

The operation of sockets is controlled by socket level options. These options are defined in <sys/socket.h>.
The functions setsockopt(2) and getsockopt(2) are used to set and get options, respectively.

RETURN VALUE
−1 is returned if an error occurs; otherwise the return value is a descriptor referencing the socket.

ERRORS
EPROT ONOSUPPORT

The protocol type or the specified protocol is not supported within this domain.

EAFNOSUPPORT
The implementation does not support the specified address family.

ENFILE
Not enough kernel memory to allocate a new socket structure.

EMFILE
Process file table overflow.

EACCES
Permission to create a socket of the specified type and/or protocol is denied.

ENOBUFS or ENOMEM
Insufficient memory is available. The socket cannot be created until sufficient resources are freed.

EINVAL
Unknown protocol, or protocol family not available.

Other errors may be generated by the underlying protocol modules.

Linux Man Page 1999-04-24 2



SOCKET(2) Linux Programmer’s Manual SOCKET(2)

CONFORMING TO
4.4BSD (the socket function call appeared in 4.2BSD). Generally portable to/from non-BSD systems sup-
porting clones of the BSD socket layer (including System V variants).

NOTE
The manifest constants used under BSD 4.* for protocol families are PF_UNIX, PF_INET, etc., while
AF_UNIX etc. are used for address families. However, already the BSD man page promises: "The protocol
family generally is the same as the address family", and subsequent standards use AF_* everywhere.

BUGS
SOCK_UUCP is not implemented yet.

SEE ALSO
accept(2), bind(2), connect(2), getprotoent(3), getsockname(2), getsockopt(2), ioctl(2), listen(2),
read(2), recv(2), select(2), send(2), shutdown(2), socketpair(2), write(2)

“An Introductory 4.3 BSD Interprocess Communication Tutorial” is reprinted in UNIX Programmer’s Sup-
plementary Documents Volume 1.

“BSD Interprocess Communication Tutorial” is reprinted in UNIX Programmer’s Supplementary Docu-
ments Volume 1.

Linux Man Page 1999-04-24 3


