
WRITE(2) Linux Programmer’s Manual WRITE(2)

NAME
write − write to a file descriptor

SYNOPSIS
#include <unistd.h>

ssize_t write(int fd , const void *buf , size_t count);

DESCRIPTION
write writes up to count bytes to the file referenced by the file descriptor fd from the buffer starting at buf.
POSIX requires that a read() which can be proved to occur after a write() has returned returns the new
data. Note that not all file systems are POSIX conforming.

RETURN VALUE
On success, the number of bytes written are returned (zero indicates nothing was written). On error, −1 is
returned, and errno is set appropriately. If count is zero and the file descriptor refers to a regular file, 0 will
be returned without causing any other effect. For a special file, the results are not portable.

ERRORS
EBADF

fd is not a valid file descriptor or is not open for writing.

EINVAL
fd is attached to an object which is unsuitable for writing.

EFAULT
buf is outside your accessible address space.

EFBIG
An attempt was made to write a file that exceeds the implementation-defined maximum file size or
the process’ file size limit, or to write at a position past than the maximum allowed offset.

EPIPE fd is connected to a pipe or socket whose reading end is closed. When this happens the writing
process will receive a SIGPIPE signal; if it catches, blocks or ignores this the error EPIPE is
returned.

EAGAIN
Non-blocking I/O has been selected using O_NONBLOCK and the write would block.

EINTR
The call was interrupted by a signal before any data was written.

ENOSPC
The device containing the file referred to by fd has no room for the data.

EIO A low-level I/O error occurred while modifying the inode.

Other errors may occur, depending on the object connected to fd .

CONFORMING TO
SVr4, SVID, POSIX, X/OPEN, 4.3BSD. SVr4 documents additional error conditions EDEADLK,
ENOLCK, ENOLNK, ENOSR, ENXIO, EPIPE, or ERANGE. Under SVr4 a write may be interrupted and
return EINTR at any point, not just before any data is written.

NOTES
A successful return from write does not make any guarantee that data has been committed to disk. In fact,
on some buggy implementations, it does not even guarantee that space has successfully been reserved for
the data. The only way to be sure is to call fsync(2) after you are done writing all your data.

SEE ALSO
close(2), fcntl(2), fsync(2), ioctl(2), lseek(2), open(2), read(2), select(2), fwrite(3), writev(3)

Linux 2.0.32 2001-12-13 1


