
SOCKET(2) Linux Programmer’s Manual SOCKET(2)

NAME
socket − create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communication domain; this selects the protocol family which will be
used for communication. These families are defined in <sys/socket.h>. The currently understood formats
include:

Name Purpose Man page
PF_UNIX,PF_LOCAL Local communication unix(7)

IPv4 Internet protocolsPF_INET ip(7)
IPv6 Internet protocolsPF_INET6
IPX − Novell protocolsPF_IPX

PF_NETLINK Kernel user interface device netlink(7)
ITU-T X.25 / ISO-8208 protocolPF_X25 x25(7)

PF_AX25 Amateur radio AX.25 protocol
Access to raw ATM PVCsPF_ATMPVC
AppletalkPF_APPLETALK ddp(7)

PF_PACKET Low lev el packet interface packet(7)

The socket has the indicated type, which specifies the communication semantics. Currently defined types
are:

SOCK_STREAM
Provides sequenced, reliable, two-way, connection-based byte streams. An out-of-band data trans-
mission mechanism may be supported.

SOCK_DGRAM
Supports datagrams (connectionless, unreliable messages of a fixed maximum length).

SOCK_SEQPACKET
Provides a sequenced, reliable, two-way connection-based data transmission path for datagrams of
fixed maximum length; a consumer is required to read an entire packet with each read system call.

SOCK_RAW
Provides raw network protocol access.

SOCK_RDM
Provides a reliable datagram layer that does not guarantee ordering.

SOCK_PACKET
Obsolete and should not be used in new programs; see packet(7).

Some socket types may not be implemented by all protocol families; for example, SOCK_SEQPACKET
is not implemented for AF_INET.

The protocol specifies a particular protocol to be used with the socket. Normally only a single protocol
exists to support a particular socket type within a given protocol family. Howev er, it is possible that many
protocols may exist, in which case a particular protocol must be specified in this manner. The protocol
number to use is specific to the “communication domain” in which communication is to take place; see
protocols(5). See getprotoent(3) on how to map protocol name strings to protocol numbers.

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. They do not preserve
record boundaries. A stream socket must be in a connected state before any data may be sent or received on
it. A connection to another socket is created with a connect(2) call. Once connected, data may be

Linux Man Page 1999-04-24 1

SOCKET(2) Linux Programmer’s Manual SOCKET(2)

transferred using read(2) and write(2) calls or some variant of the send(2) and recv(2) calls. When a ses-
sion has been completed a close(2) may be performed. Out-of-band data may also be transmitted as
described in send(2) and received as described in recv(2).

The communications protocols which implement a SOCK_STREAM ensure that data is not lost or dupli-
cated. If a piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered to be dead. When SO_KEEPALIVE
is enabled on the socket the protocol checks in a protocol-specific manner if the other end is still alive. A
SIGPIPE signal is raised if a process sends or receives on a broken stream; this causes naive processes,
which do not handle the signal, to exit. SOCK_SEQPACKET sockets employ the same system calls as
SOCK_STREAM sockets. The only difference is that read(2) calls will return only the amount of data
requested, and any remaining in the arriving packet will be discarded. Also all message boundaries in
incoming datagrams are preserved.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents named in
send(2) calls. Datagrams are generally received with recvfrom(2), which returns the next datagram with
its return address.

SOCK_PACKET is an obsolete socket type to receive raw packets directly from the device driver. Use
packet(7) instead.

An fcntl(2) call with the the F_SETOWN argument can be used to specify a process group to receive a
SIGURG signal when the out-of-band data arrives or SIGPIPE signal when a SOCK_STREAM connec-
tion breaks unexpectedly. It may also be used to set the process or process group that receives the I/O and
asynchronous notification of I/O events via SIGIO. Using F_SETOWN is equivalent to an ioctl(2) call
with the SIOSETOWN argument.

When the network signals an error condition to the protocol module (e.g. using a ICMP message for IP)
the pending error flag is set for the socket. The next operation on this socket will return the error code of
the pending error. For some protocols it is possible to enable a per-socket error queue to retrieve detailed
information about the error; see IP_RECVERR in ip(7).

The operation of sockets is controlled by socket level options. These options are defined in <sys/socket.h>.
The functions setsockopt(2) and getsockopt(2) are used to set and get options, respectively.

RETURN VALUE
−1 is returned if an error occurs; otherwise the return value is a descriptor referencing the socket.

ERRORS
EPROT ONOSUPPORT

The protocol type or the specified protocol is not supported within this domain.

EAFNOSUPPORT
The implementation does not support the specified address family.

ENFILE
Not enough kernel memory to allocate a new socket structure.

EMFILE
Process file table overflow.

EACCES
Permission to create a socket of the specified type and/or protocol is denied.

ENOBUFS or ENOMEM
Insufficient memory is available. The socket cannot be created until sufficient resources are freed.

EINVAL
Unknown protocol, or protocol family not available.

Other errors may be generated by the underlying protocol modules.

Linux Man Page 1999-04-24 2

SOCKET(2) Linux Programmer’s Manual SOCKET(2)

CONFORMING TO
4.4BSD (the socket function call appeared in 4.2BSD). Generally portable to/from non-BSD systems sup-
porting clones of the BSD socket layer (including System V variants).

NOTE
The manifest constants used under BSD 4.* for protocol families are PF_UNIX, PF_INET, etc., while
AF_UNIX etc. are used for address families. However, already the BSD man page promises: "The protocol
family generally is the same as the address family", and subsequent standards use AF_* everywhere.

BUGS
SOCK_UUCP is not implemented yet.

SEE ALSO
accept(2), bind(2), connect(2), getprotoent(3), getsockname(2), getsockopt(2), ioctl(2), listen(2),
read(2), recv(2), select(2), send(2), shutdown(2), socketpair(2), write(2)

“An Introductory 4.3 BSD Interprocess Communication Tutorial” is reprinted in UNIX Programmer’s Sup-
plementary Documents Volume 1.

“BSD Interprocess Communication Tutorial” is reprinted in UNIX Programmer’s Supplementary Docu-
ments Volume 1.

Linux Man Page 1999-04-24 3

PA CKET(7) Linux Programmer’s Manual PACKET(7)

NAME
packet, PF_PACKET − packet interface on device level.

SYNOPSIS
#include <sys/socket.h>
#include <features.h> /* for the glibc version number */
#if __GLIBC__ >= 2 && __GLIBC_MINOR >= 1
#include <netpacket/packet.h>
#include <net/ethernet.h> /* the L2 protocols */
#else
#include <asm/types.h>
#include <linux/if_packet.h>
#include <linux/if_ether.h> /* The L2 protocols */
#endif

packet_socket = socket(PF_PACKET, int socket_type, int protocol);

DESCRIPTION
Packet sockets are used to receive or send raw packets at the device driver (OSI Layer 2) level. They allow
the user to implement protocol modules in user space on top of the physical layer.

The socket_type is either SOCK_RAW for raw packets including the link level header or SOCK_DGRAM
for cooked packets with the link level header removed. The link level header information is available in a
common format in a sockaddr_ll. protocol is the IEEE 802.3 protocol number in network order. See the
<linux/if_ether.h> include file for a list of allowed protocols. When protocol is set to htons(ETH_P_ALL)
then all protocols are received. All incoming packets of that protocol type will be passed to the packet
socket before they are passed to the protocols implemented in the kernel.

Only processes with effective uid 0 or the CAP_NET_RAW capability may open packet sockets.

SOCK_RAW packets are passed to and from the device driver without any changes in the packet data.
When receiving a packet, the address is still parsed and passed in a standard sockaddr_ll address structure.
When transmitting a packet, the user supplied buffer should contain the physical layer header. That packet
is then queued unmodified to the network driver of the interface defined by the destination address. Some
device drivers always add other headers. SOCK_RAW is similar to but not compatible with the obsolete
SOCK_PACKET of Linux 2.0.

SOCK_DGRAM operates on a slightly higher level. The physical header is removed before the packet is
passed to the user. Packets sent through a SOCK_DGRAM packet socket get a suitable physical layer
header based on the information in the sockaddr_ll destination address before they are queued.

By default all packets of the specified protocol type are passed to a packet socket. To only get packets from
a specific interface use bind(2) specifying an address in a struct sockaddr_ll to bind the packet socket to
an interface. Only the sll_protocol and the sll_ifindex address fields are used for purposes of binding.

The connect(2) operation is not supported on packet sockets.

When the MSG_TRUNC flag is passed to recvmsg(2), recv(2), recvfrom(2) the real length of the packet
on the wire is always returned, even when it is longer than the buffer.

ADDRESS TYPES
The sockaddr_ll is a device independent physical layer address.

struct sockaddr_ll {

Linux Man Page 1999-04-29 1

PA CKET(7) Linux Programmer’s Manual PACKET(7)

unsigned short sll_family; /* Always AF_PACKET */
unsigned short sll_protocol; /* Physical layer protocol */
int sll_ifindex; /* Interface number */
unsigned short sll_hatype; /* Header type */
unsigned char sll_pkttype; /* Packet type */
unsigned char sll_halen; /* Length of address */
unsigned char sll_addr[8]; /* Physical layer address */

};

sll_protocol is the standard ethernet protocol type in network order as defined in the linux/if_ether.h
include file. It defaults to the socket’s protocol. sll_ifindex is the interface index of the interface (see net-
device(7)); 0 matches any interface (only legal for binding). sll_hatype is a ARP type as defined in the
linux/if_arp.h include file. sll_pkttype contains the packet type. Valid types are PA CKET_HOST for a
packet addressed to the local host, PA CKET_BROADCAST for a physical layer broadcast packet,
PA CKET_MULTICAST for a packet sent to a physical layer multicast address, PA CKET_OTHER-
HOST for a packet to some other host that has been caught by a device driver in promiscuous mode, and
PA CKET_OUTGOING for a packet originated from the local host that is looped back to a packet socket.
These types make only sense for receiving. sll_addr and sll_halen contain the physical layer (e.g. IEEE
802.3) address and its length. The exact interpretation depends on the device.

When you send packets it is enough to specify sll_family, sll_addr, sll_halen, sll_ifindex. The other fields
should be 0. sll_hatype and sll_pkttype are set on received packets for your information. For bind only
sll_protocol and sll_ifindex are used.

SOCKET OPTIONS
Packet sockets can be used to configure physical layer multicasting and promiscuous mode. It works by
calling setsockopt(2) on a packet socket for SOL_PACKET and one of the options
PA CKET_ADD_MEMBERSHIP to add a binding or PA CKET_DROP_MEMBERSHIP to drop it.
They both expect a packet_mreq structure as argument:

struct packet_mreq
{

int mr_ifindex; /* interface index */
unsigned short mr_type; /* action */
unsigned short mr_alen; /* address length */
unsigned char mr_address[8]; /* physical layer address */

};

mr_ifindex contains the interface index for the interface whose status should be changed. The mr_type
parameter specifies which action to perform. PA CKET_MR_PROMISC enables receiving all packets on
a shared medium - often known as ‘‘promiscuous mode’’, PA CKET_MR_MULTICAST binds the socket
to the physical layer multicast group specified in mr_address and mr_alen, and PA CKET_MR_ALL-
MULTI sets the socket up to receive all multicast packets arriving at the interface.

In addition the traditional ioctls SIOCSIFFLAGS, SIOCADDMULTI, SIOCDELMULTI can be used for
the same purpose.

IOCTLS
SIOCGSTAMP can be used to receive the time stamp of the last received packet. Argument is a struct
timeval.

In addition all standard ioctls defined in netdevice(7) and socket(7) are valid on packet sockets.

Linux Man Page 1999-04-29 2

PA CKET(7) Linux Programmer’s Manual PACKET(7)

ERROR HANDLING
Packet sockets do no error handling other than errors occurred while passing the packet to the device driver.
They don’t hav e the concept of a pending error.

COMPATIBILITY
In Linux 2.0, the only way to get a packet socket was by calling socket(PF_INET, SOCK_PACKET, pro-
tocol). This is still supported but strongly deprecated. The main difference between the two methods is
that SOCK_PACKET uses the old struct sockaddr_pkt to specify an interface, which doesn’t provide
physical layer independence.

struct sockaddr_pkt
{

unsigned short spkt_family;
unsigned char spkt_device[14];
unsigned short spkt_protocol;

};

spkt_family contains the device type, spkt_protocol is the IEEE 802.3 protocol type as defined in
<sys/if_ether.h> and spkt_device is the device name as a null terminated string, e.g. eth0.

This structure is obsolete and should not be used in new code.

NOTES
For portable programs it is suggested to use PF_PACKET via pcap(3); although this only covers a subset
of the PF_PACKET features.

The SOCK_DGRAM packet sockets make no attempt to create or parse the IEEE 802.2 LLC header for a
IEEE 802.3 frame. When ETH_P_802_3 is specified as protocol for sending the kernel creates the 802.3
frame and fills out the length field; the user has to supply the LLC header to get a fully conforming packet.
Incoming 802.3 packets are not multiplexed on the DSAP/SSAP protocol fields; instead they are supplied
to the user as protocol ETH_P_802_2 with the LLC header prepended. It is thus not possible to bind to
ETH_P_802_3; bind to ETH_P_802_2 instead and do the protocol multiplex yourself. The default for
sending is the standard Ethernet DIX encapsulation with the protocol filled in.

Packet sockets are not subject to the input or output firewall chains.

ERRORS
ENETDOWN

Interface is not up.

ENOTCONN
No interface address passed.

ENODEV
Unknown device name or interface index specified in interface address.

EMSGSIZE
Packet is bigger than interface MTU.

ENOBUFS
Not enough memory to allocate the packet.

Linux Man Page 1999-04-29 3

PA CKET(7) Linux Programmer’s Manual PACKET(7)

EFAULT
User passed invalid memory address.

EINVAL
Invalid argument.

ENXIO
Interface address contained illegal interface index.

EPERM
User has insufficient privileges to carry out this operation.

EADDRNOTAVAIL
Unknown multicast group address passed.

ENOENT
No packet received.

In addition other errors may be generated by the low-level driver.

VERSIONS
PF_PACKET is a new feature in Linux 2.2. Earlier Linux versions supported only SOCK_PACKET.

BUGS
glibc 2.1 does not have a define for SOL_PACKET. The suggested workaround is to use

#ifndef SOL_PACKET
#define SOL_PACKET 263
#endif

This is fixed in later glibc versions and also does not occur on libc5 systems.

The IEEE 802.2/803.3 LLC handling could be considered as a bug.

Socket filters are not documented.

The MSG_TRUNC recvmsg extension is an ugly hack and should be replaced by a control message. There
is currently no way to get the original destination address of packets via SOCK_DGRAM.

CREDITS
This man page was written by Andi Kleen with help from Matthew Wilcox. PF_PACKET in Linux 2.2 was
implemented by Alexey Kuznetsov, based on code by Alan Cox and others.

SEE ALSO
ip(7), socket(7), socket(2), raw(7), pcap(3)

RFC 894 for the standard IP Ethernet encapsulation.

RFC 1700 for the IEEE 802.3 IP encapsulation.

The <linux/if_ether.h> include file for physical layer protocols.

Linux Man Page 1999-04-29 4

WRITE(2) Linux Programmer’s Manual WRITE(2)

NAME
write − write to a file descriptor

SYNOPSIS
#include <unistd.h>

ssize_t write(int fd , const void *buf , size_t count);

DESCRIPTION
write writes up to count bytes to the file referenced by the file descriptor fd from the buffer starting at buf.
POSIX requires that a read() which can be proved to occur after a write() has returned returns the new
data. Note that not all file systems are POSIX conforming.

RETURN VALUE
On success, the number of bytes written are returned (zero indicates nothing was written). On error, −1 is
returned, and errno is set appropriately. If count is zero and the file descriptor refers to a regular file, 0 will
be returned without causing any other effect. For a special file, the results are not portable.

ERRORS
EBADF

fd is not a valid file descriptor or is not open for writing.

EINVAL
fd is attached to an object which is unsuitable for writing.

EFAULT
buf is outside your accessible address space.

EFBIG
An attempt was made to write a file that exceeds the implementation-defined maximum file size or
the process’ file size limit, or to write at a position past than the maximum allowed offset.

EPIPE fd is connected to a pipe or socket whose reading end is closed. When this happens the writing
process will receive a SIGPIPE signal; if it catches, blocks or ignores this the error EPIPE is
returned.

EAGAIN
Non-blocking I/O has been selected using O_NONBLOCK and the write would block.

EINTR
The call was interrupted by a signal before any data was written.

ENOSPC
The device containing the file referred to by fd has no room for the data.

EIO A low-level I/O error occurred while modifying the inode.

Other errors may occur, depending on the object connected to fd .

CONFORMING TO
SVr4, SVID, POSIX, X/OPEN, 4.3BSD. SVr4 documents additional error conditions EDEADLK,
ENOLCK, ENOLNK, ENOSR, ENXIO, EPIPE, or ERANGE. Under SVr4 a write may be interrupted and
return EINTR at any point, not just before any data is written.

NOTES
A successful return from write does not make any guarantee that data has been committed to disk. In fact,
on some buggy implementations, it does not even guarantee that space has successfully been reserved for
the data. The only way to be sure is to call fsync(2) after you are done writing all your data.

SEE ALSO
close(2), fcntl(2), fsync(2), ioctl(2), lseek(2), open(2), read(2), select(2), fwrite(3), writev(3)

Linux 2.0.32 2001-12-13 1

STRLEN(3) Linux Programmer’s Manual STRLEN(3)

NAME
strlen − calculate the length of a string

SYNOPSIS
#include <string.h>

size_t strlen(const char *s);

DESCRIPTION
The strlen() function calculates the length of the string s, not including the terminating ‘\0’ character.

RETURN VALUE
The strlen() function returns the number of characters in s.

CONFORMING TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
string(3)

1993-04-12 1

PRINTF(3) Linux Programmer’s Manual PRINTF(3)

NAME
printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf − formatted output conversion

SYNOPSIS
#include <stdio.h>

int printf(const char * format, ...);
int fprintf(FILE *stream, const char * format, ...);
int sprintf(char *str, const char * format, ...);
int snprintf(char *str, size_t size, const char * format, ...);

#include <stdarg.h>

int vprintf(const char * format, va_list ap);
int vfprintf(FILE *stream, const char * format, va_list ap);
int vsprintf(char *str, const char * format, va_list ap);
int vsnprintf(char *str, size_t size, const char * format, va_list ap);

DESCRIPTION
The functions in the printf family produce output according to a format as described below. The functions
printf and vprintf write output to stdout, the standard output stream; fprintf and vfprintf write output to
the given output stream; sprintf, snprintf, vsprintf and vsnprintf write to the character string str.

The functions vprintf, vfprintf, vsprintf, vsnprintf are equivalent to the functions printf, fprintf, sprintf,
snprintf, respectively, except that they are called with a va_list instead of a variable number of arguments.
These functions do not call the va_end macro. Consequently, the value of ap is undefined after the call. The
application should call va_end(ap) itself afterwards.

These eight functions write the output under the control of a format string that specifies how subsequent
arguments (or arguments accessed via the variable-length argument facilities of stdarg(3)) are converted for
output.

Return value
These functions return the number of characters printed (not including the trailing ‘\0’ used to end output to
strings). snprintf and vsnprintf do not write more than size bytes (including the trailing ’\0’), and return
−1 if the output was truncated due to this limit. (Thus until glibc 2.0.6. Since glibc 2.1 these functions fol-
low the C99 standard and return the number of characters (excluding the trailing ’\0’) which would have
been written to the final string if enough space had been available.)

Format of the format string
The format string is a character string, beginning and ending in its initial shift state, if any. The format
string is composed of zero or more directives: ordinary characters (not %), which are copied unchanged to
the output stream; and conversion specifications, each of which results in fetching zero or more subsequent
arguments. Each conversion specification is introduced by the character %, and ends with a conversion
specifier. In between there may be (in this order) zero or more flags, an optional minimum field width, an
optional precision and an optional length modifier.

The arguments must correspond properly (after type promotion) with the conversion specifier. By default,
the arguments are used in the order given, where each ‘*’ and each conversion specifier asks for the next
argument (and it is an error if insufficiently many arguments are given). One can also specify explicitly
which argument is taken, at each place where an argument is required, by writing ‘%m$’ instead of ‘%’ and
‘*m$’ instead of ‘*’, where the decimal integer m denotes the position in the argument list of the desired
argument, indexed starting from 1. Thus,

printf("%*d", width, num);
and

printf("%2$*1$d", width, num);
are equivalent. The second style allows repeated references to the same argument. The C99 standard does
not include the style using ‘$’, which comes from the Single Unix Specification. If the style using ‘$’ is

Linux Manpage 2000-10-16 1

PRINTF(3) Linux Programmer’s Manual PRINTF(3)

used, it must be used throughout for all conversions taking an argument and all width and precision argu-
ments, but it may be mixed with ‘%%’ formats which do not consume an argument. There may be no gaps
in the numbers of arguments specified using ‘$’; for example, if arguments 1 and 3 are specified, argument
2 must also be specified somewhere in the format string.

For some numeric conversions a radix character (‘decimal point’) or thousands’ grouping character is used.
The actual character used depends on the LC_NUMERIC part of the locale. The POSIX locale uses ‘.’ as
radix character, and does not have a grouping character. Thus,

printf("%’.2f", 1234567.89);
results in ‘1234567.89’ in the POSIX locale, in ‘1234567,89’ in the nl_NL locale, and in ‘1.234.567,89’ in
the da_DK locale.

The flag characters
The character % is followed by zero or more of the following flags:

The value should be converted to an ‘‘alternate form’’. For o conversions, the first character of the
output string is made zero (by prefixing a 0 if it was not zero already). For x and X conversions, a
non−zero result has the string ‘0x’ (or ‘0X’ for X conversions) prepended to it. For a, A, e, E, f,
F, g, and G conversions, the result will always contain a decimal point, even if no digits follow it
(normally, a decimal point appears in the results of those conversions only if a digit follows). For
g and G conversions, trailing zeros are not removed from the result as they would otherwise be.
For other conversions, the result is undefined.

0 The value should be zero padded. For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, the
converted value is padded on the left with zeros rather than blanks. If the 0 and − flags both
appear, the 0 flag is ignored. If a precision is given with a numeric conversion (d, i, o, u, x, and
X), the 0 flag is ignored. For other conversions, the behavior is undefined.

− The converted value is to be left adjusted on the field boundary. (The default is right justification.)
Except for n conversions, the converted value is padded on the right with blanks, rather than on the
left with blanks or zeros. A − overrides a 0 if both are given.

’ ’ (a space) A blank should be left before a positive number (or empty string) produced by a signed
conversion.

+ A sign (+ or -) always be placed before a number produced by a signed conversion. By default a
sign is used only for negative numbers. A + overrides a space if both are used.

The five flag characters above are defined in the C standard. The SUSv2 specifies one further flag charac-
ter.

’ For decimal conversion (i, d, u, f, F, g, G) the output is to be grouped with thousands’ grouping
characters if the locale information indicates any. Note that many versions of gcc cannot parse this
option and will issue a warning. SUSv2 does not include %’F.

glibc 2.2 adds one further flag character.

I For decimal integer conversion (i, d, u) the output uses the locale’s alternative output digits, if any
(for example, Arabic digits). However, it does not include any locale definitions with such outdig-
its defined.

The field width
An optional decimal digit string (with nonzero first digit) specifying a minimum field width. If the con-
verted value has fewer characters than the field width, it will be padded with spaces on the left (or right, if
the left-adjustment flag has been given). Instead of a decimal digit string one may write ‘*’ or ‘*m$’ (for
some decimal integer m) to specify that the field width is given in the next argument, or in the m-th argu-
ment, respectively, which must be of type int. A negative field width is taken as a ‘-’ flag followed by a
positive field width. In no case does a non-existent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is expanded to contain the conversion result.

Linux Manpage 2000-10-16 2

PRINTF(3) Linux Programmer’s Manual PRINTF(3)

The precision
An optional precision, in the form of a period (‘.’) followed by an optional decimal digit string. Instead of
a decimal digit string one may write ‘*’ or ‘*m$’ (for some decimal integer m) to specify that the precision
is given in the next argument, or in the m-th argument, respectively, which must be of type int. If the preci-
sion is given as just ‘.’, or the precision is negative, the precision is taken to be zero. This gives the mini-
mum number of digits to appear for d, i, o, u, x, and X conversions, the number of digits to appear after the
radix character for a, A, e, E, f, and F conversions, the maximum number of significant digits for g and G
conversions, or the maximum number of characters to be printed from a string for s and S conversions.

The length modifier
Here, ‘integer conversion’ stands for d, i, o, u, x, or X conversion.

hh A following integer conversion corresponds to a signed char or unsigned char argument, or a fol-
lowing n conversion corresponds to a pointer to a signed char argument.

h A following integer conversion corresponds to a short int or unsigned short int argument, or a fol-
lowing n conversion corresponds to a pointer to a short int argument.

l (ell) A following integer conversion corresponds to a long int or unsigned long int argument, or a
following n conversion corresponds to a pointer to a long int argument, or a following c conver-
sion corresponds to a wint_t argument, or a following s conversion corresponds to a pointer to
wchar_t argument.

ll (ell-ell). A following integer conversion corresponds to a long long int or unsigned long long int
argument, or a following n conversion corresponds to a pointer to a long long int argument.

L A following a, A, e, E, f, F, g, or G conversion corresponds to a long double argument. (C99
allows %LF, but SUSv2 does not.)

q (‘quad’. BSD 4.4 and Linux libc5 only. Don’t use.) This is a synonym for ll.

j A following integer conversion corresponds to an intmax_t or uintmax_t argument.

z A following integer conversion corresponds to a size_t or ssize_t argument. (Linux libc5 has Z
with this meaning. Don’t use it.)

t A following integer conversion corresponds to a ptrdiff_t argument.

The SUSv2 only knows about the length modifiers h (in hd, hi, ho, hx, hX, hn) and l (in ld, li, lo, lx, lX,
ln, lc, ls) and L (in Le, LE, Lf, Lg, LG).

The conversion specifier
A character that specifies the type of conversion to be applied. The conversion specifiers and their mean-
ings are:

d,i The int argument is converted to signed decimal notation. The precision, if any, giv es the mini-
mum number of digits that must appear; if the converted value requires fewer digits, it is padded
on the left with zeros. The default precision is 1. When 0 is printed with an explicit precision 0,
the output is empty.

o,u,x,X The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u), or unsigned
hexadecimal (x and X) notation. The letters abcdef are used for x conversions; the letters
ABCDEF are used for X conversions. The precision, if any, giv es the minimum number of digits
that must appear; if the converted value requires fewer digits, it is padded on the left with zeros.
The default precision is 1. When 0 is printed with an explicit precision 0, the output is empty.

e,E The double argument is rounded and converted in the style [−]d.ddde±dd where there is one digit
before the decimal−point character and the number of digits after it is equal to the precision; if the
precision is missing, it is taken as 6; if the precision is zero, no decimal−point character appears.
An E conversion uses the letter E (rather than e) to introduce the exponent. The exponent always
contains at least two digits; if the value is zero, the exponent is 00.

Linux Manpage 2000-10-16 3

PRINTF(3) Linux Programmer’s Manual PRINTF(3)

f,F The double argument is rounded and converted to decimal notation in the style [−]ddd.ddd, where
the number of digits after the decimal−point character is equal to the precision specification. If the
precision is missing, it is taken as 6; if the precision is explicitly zero, no decimal−point character
appears. If a decimal point appears, at least one digit appears before it.

(The SUSv2 does not know about F and says that character string representations for infinity and
NaN may be made available. The C99 standard specifies ‘[-]inf’ or ‘[-]infinity’ for infinity, and a
string starting with ‘nan’ for NaN, in the case of f conversion, and ‘[-]INF’ or ‘[-]INFINITY’ or
‘NAN*’ in the case of F conversion.)

g,G The double argument is converted in style f or e (or F or E for G conversions). The precision
specifies the number of significant digits. If the precision is missing, 6 digits are given; if the pre-
cision is zero, it is treated as 1. Style e is used if the exponent from its conversion is less than −4
or greater than or equal to the precision. Trailing zeros are removed from the fractional part of the
result; a decimal point appears only if it is followed by at least one digit.

a,A (C99; not in SUSv2) For a conversion, the double argument is converted to hexadecimal notation
(using the letters abcdef) in the style [-]0xh.hhhhp±d; for A conversion the prefix 0X, the letters
ABCDEF, and the exponent separator P is used. There is one hexadecimal digit before the deci-
mal point, and the number of digits after it is equal to the precision. The default precision suffices
for an exact representation of the value if an exact representation in base 2 exists and otherwise is
sufficiently large to distinguish values of type double. The digit before the decimal point is
unspecified for non-normalized numbers, and nonzero but otherwise unspecified for normalized
numbers.

c If no l modifier is present, the int argument is converted to an unsigned char, and the resulting
character is written. If an l modifier is present, the wint_t (wide character) argument is converted
to a multibyte sequence by a call to the wcrtomb function, with a conversion state starting in the
initial state, and the resulting multibyte string is written.

s If no l modifier is present: The const char * argument is expected to be a pointer to an array of
character type (pointer to a string). Characters from the array are written up to (but not including)
a terminating NUL character; if a precision is specified, no more than the number specified are
written. If a precision is given, no null character need be present; if the precision is not specified,
or is greater than the size of the array, the array must contain a terminating NUL character.

If an l modifier is present: The const wchar_t * argument is expected to be a pointer to an array of
wide characters. Wide characters from the array are converted to multibyte characters (each by a
call to the wcrtomb function, with a conversion state starting in the initial state before the first
wide character), up to and including a terminating null wide character. The resulting multibyte
characters are written up to (but not including) the terminating null byte. If a precision is specified,
no more bytes than the number specified are written, but no partial multibyte characters are writ-
ten. Note that the precision determines the number of bytes written, not the number of wide char-
acters or screen positions. The array must contain a terminating null wide character, unless a pre-
cision is given and it is so small that the number of bytes written exceeds it before the end of the
array is reached.

C (Not in C99, but in SUSv2.) Synonym for lc. Don’t use.

S (Not in C99, but in SUSv2.) Synonym for ls. Don’t use.

p The void * pointer argument is printed in hexadecimal (as if by %#x or %#lx).

n The number of characters written so far is stored into the integer indicated by the int * (or variant)
pointer argument. No argument is converted.

% A ‘%’ is written. No argument is converted. The complete conversion specification is ‘%%’.

Linux Manpage 2000-10-16 4

PRINTF(3) Linux Programmer’s Manual PRINTF(3)

EXAMPLES
To print pi to five decimal places:

#include <math.h>
#include <stdio.h>
fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0));

To print a date and time in the form ‘Sunday, July 3, 10:02’, where weekday and month are pointers to
strings:

#include <stdio.h>
fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",

weekday, month, day, hour, min);

Many countries use the day-month-year order. Hence, an internationalized version must be able to print the
arguments in an order specified by the format:

#include <stdio.h>
fprintf(stdout, format,

weekday, month, day, hour, min);
where format depends on locale, and may permute the arguments. With the value

"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"
one might obtain ‘Sonntag, 3. Juli, 10:02’.

To allocate a sufficiently large string and print into it (code correct for both glibc 2.0 and glibc 2.1):
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
char *
make_message(const char *fmt, ...) {

/* Guess we need no more than 100 bytes. */
int n, size = 100;
char *p;
va_list ap;
if ((p = malloc (size)) == NULL)

return NULL;
while (1) {

/* Try to print in the allocated space. */
va_start(ap, fmt);
n = vsnprintf (p, size, fmt, ap);
va_end(ap);
/* If that worked, return the string. */
if (n > -1 && n < size)

return p;
/* Else try again with more space. */
if (n > -1) /* glibc 2.1 */

size = n+1; /* precisely what is needed */
else /* glibc 2.0 */

size *= 2; /* twice the old size */
if ((p = realloc (p, size)) == NULL)

return NULL;
}

}

CONFORMING TO
The fprintf, printf, sprintf, vprintf, vfprintf, and vsprintf functions conform to ANSI X3.159-1989
(‘‘ANSI C’’) and ISO/IEC 9899:1999 (‘‘ISO C99’’). The snprintf and vsnprintf functions conform to
ISO/IEC 9899:1999.

Linux Manpage 2000-10-16 5

PRINTF(3) Linux Programmer’s Manual PRINTF(3)

Concerning the return value of snprintf, the SUSv2 and the C99 standard contradict each other: when
snprintf is called with size=0 then SUSv2 stipulates an unspecified return value less than 1, while C99
allows str to be NULL in this case, and gives the return value (as always) as the number of characters that
would have been written in case the output string has been large enough.

Linux libc4 knows about the five C standard flags. It knows about the length modifiers h,l,L, and the con-
versions cdeEfFgGinopsuxX, where F is a synonym for f. Additionally, it accepts D,O,U as synonyms for
ld,lo,lu. (This is bad, and caused serious bugs later, when support for %D disappeared.) No locale-depen-
dent radix character, no thousands’ separator, no NaN or infinity, no %m$ and *m$.

Linux libc5 knows about the five C standard flags and the ’ flag, locale, %m$ and *m$. It knows about the
length modifiers h,l,L,Z,q, but accepts L and q both for long doubles and for long long integers (this is a
bug). It no longer recognizes FDOU, but adds a new conversion character m, which outputs str-
error(errno).

glibc 2.0 adds conversion characters C and S.

glibc 2.1 adds length modifiers hh,j,t,z and conversion characters a,A.

glibc 2.2 adds the conversion character F with C99 semantics, and the flag character I.

HISTORY
Unix V7 defines the three routines printf, fprintf, sprintf, and has the flag -, the width or precision *, the
length modifier l, and the conversions doxfegcsu, and also D,O,U,X as synonyms for ld,lo,lu,lx. This is still
true for BSD 2.9.1, but BSD 2.10 has the flags #, + and <space> and no longer mentions D,O,U,X. BSD
2.11 has vprintf, vfprintf, vsprintf, and warns not to use D,O,U,X. BSD 4.3 Reno has the flag 0, the
length modifiers h and L, and the conversions n, p, E, G, X (with current meaning) and deprecates D,O,U.
BSD 4.4 introduces the functions snprintf and vsnprintf, and the length modifier q. FreeBSD also has
functions asprintf and vasprintf , that allocate a buffer large enough for sprintf. In glibc there are functions
dprintf and vdprintf that print to a file descriptor instead of a stream.

BUGS
Because sprintf and vsprintf assume an arbitrarily long string, callers must be careful not to overflow the
actual space; this is often impossible to assure. Note that the length of the strings produced is locale-depen-
dent and difficult to predict. Use snprintf and vsnprintf instead (or asprintf and vasprintf).

Linux libc4.[45] does not have a snprintf, but provides a libbsd that contains an snprintf equivalent to
sprintf, i.e., one that ignores the size argument. Thus, the use of snprintf with early libc4 leads to serious
security problems.

Code such as printf(foo); often indicates a bug, since foo may contain a % character. If foo comes from
untrusted user input, it may contain %n, causing the printf call to write to memory and creating a security
hole.

Some floating point conversions under early libc4 caused memory leaks.

SEE ALSO
printf(1), asprintf(3), dprintf(3), wcrtomb(3), wprintf(3), scanf(3), locale(5)

Linux Manpage 2000-10-16 6

SHUTDOWN(2) Linux Programmer’s Manual SHUTDOWN(2)

NAME
shutdown − shut down part of a full-duplex connection

SYNOPSIS
#include <sys/socket.h>

int shutdown(int s, int how);

DESCRIPTION
The shutdown call causes all or part of a full-duplex connection on the socket associated with s to be shut
down. If how is SHUT_RD, further receptions will be disallowed. If how is SHUT_WR, further transmis-
sions will be disallowed. If how is SHUT_RDWR, further receptions and transmissions will be disal-
lowed.

RETURN VALUE
On success, zero is returned. On error, −1 is returned, and errno is set appropriately.

ERRORS
EBADF

s is not a valid descriptor.

ENOTSOCK
s is a file, not a socket.

ENOTCONN
The specified socket is not connected.

NOTES
The constants SHUT_RD, SHUT_WR, SHUT_RDWR have the value 0, 1, 2, respectively, and are defined
in <sys/socket.h> since glibc-2.1.91.

CONFORMING TO
4.4BSD (the shutdown function call first appeared in 4.2BSD).

SEE ALSO
connect(2), socket(2)

BSD Man Page 1993-07-24 1

READ(2) Linux Programmer’s Manual READ(2)

NAME
read − read from a file descriptor

SYNOPSIS
#include <unistd.h>

ssize_t read(int fd , void *buf , size_t count);

DESCRIPTION
read() attempts to read up to count bytes from file descriptor fd into the buffer starting at buf .

If count is zero, read() returns zero and has no other results. If count is greater than SSIZE_MAX, the
result is unspecified.

RETURN VALUE
On success, the number of bytes read is returned (zero indicates end of file), and the file position is
advanced by this number. It is not an error if this number is smaller than the number of bytes requested;
this may happen for example because fewer bytes are actually available right now (maybe because we were
close to end-of-file, or because we are reading from a pipe, or from a terminal), or because read() was
interrupted by a signal. On error, −1 is returned, and errno is set appropriately. In this case it is left unspec-
ified whether the file position (if any) changes.

ERRORS
EINTR

The call was interrupted by a signal before any data was read.

EAGAIN
Non-blocking I/O has been selected using O_NONBLOCK and no data was immediately avail-
able for reading.

EIO I/O error. This will happen for example when the process is in a background process group, tries to
read from its controlling tty, and either it is ignoring or blocking SIGTTIN or its process group is
orphaned. It may also occur when there is a low-level I/O error while reading from a disk or tape.

EISDIR
fd refers to a directory.

EBADF
fd is not a valid file descriptor or is not open for reading.

EINVAL
fd is attached to an object which is unsuitable for reading.

EFAULT
buf is outside your accessible address space.

Other errors may occur, depending on the object connected to fd . POSIX allows a read that is interrupted
after reading some data to return −1 (with errno set to EINTR) or to return the number of bytes already
read.

CONFORMING TO
SVr4, SVID, AT&T, POSIX, X/OPEN, BSD 4.3

RESTRICTIONS
On NFS file systems, reading small amounts of data will only update the time stamp the first time, subse-
quent calls may not do so. This is caused by client side attribute caching, because most if not all NFS
clients leave atime updates to the server and client side reads satisfied from the client’s cache will not cause
atime updates on the server as there are no server side reads. UNIX semantics can be obtained by disabling
client side attribute caching, but in most situations this will substantially increase server load and decrease
performance.

Many filesystems and disks were considered to be fast enough that the implementation of O_NONBLOCK
was deemed unneccesary. So, O_NONBLOCK may not be available on files and/or disks.

Linux 2.0.32 1997-07-12 1

READ(2) Linux Programmer’s Manual READ(2)

SEE ALSO
close(2), fcntl(2), ioctl(2), lseek(2), readdir(2), readlink(2), select(2), write(2), fread(3), readv(3)

Linux 2.0.32 1997-07-12 2

GETHOSTBYNAME(3) Linux Programmer’s Manual GETHOSTBYNAME(3)

NAME
gethostbyname, gethostbyaddr, sethostent, endhostent, herror, hstrerror − get network host entry

SYNOPSIS
#include <netdb.h>
extern int h_errno;

struct hostent *gethostbyname(const char *name);

#include <sys/socket.h> /* for AF_INET */
struct hostent *gethostbyaddr(const char *addr,
int len, int type);

void sethostent(int stayopen);

void endhostent(void);

void herror(const char *s);

const char *hstrerror(int err);

/* GNU extensions */
struct hostent *gethostbyname2(const char *name, int af);

int gethostbyname_r (const char *name,
struct hostent *ret, char *buf , size_t buflen,
struct hostent **result, int *h_errnop);

int gethostbyname2_r (const char *name, int af,
struct hostent *ret, char *buf , size_t buflen,
struct hostent **result, int *h_errnop);

DESCRIPTION
The gethostbyname() function returns a structure of type hostent for the given host name. Here name is
either a host name, or an IPv4 address in standard dot notation, or an IPv6 address in colon (and possibly
dot) notation. (See RFC 1884 for the description of IPv6 addresses.) If name is an IPv4 or IPv6 address, no
lookup is performed and gethostbyname() simply copies name into the h_name field and its struct in_addr
equivalent into the h_addr_list[0] field of the returned hostent structure. If name doesn’t end in a dot and
the environment variable HOSTALIASES is set, the alias file pointed to by HOSTALIASES will first be
searched for name (see hostname(7) for the file format). The current domain and its parents are searched
unless name ends in a dot.

The gethostbyaddr() function returns a structure of type hostent for the given host address addr of length
len and address type type. The only valid address type is currently AF_INET.

The sethostent() function specifies, if stayopen is true (1), that a connected TCP socket should be used for
the name server queries and that the connection should remain open during successive queries. Otherwise,
name server queries will use UDP datagrams.

The endhostent() function ends the use of a TCP connection for name server queries.

The (obsolete) herror() function prints the error message associated with the current value of h_errno on
stderr.

The (obsolete) hstrerror() function takes an error number (typically h_errno) and returns the correspond-
ing message string.

The domain name queries carried out by gethostbyname() and gethostbyaddr() use a combination of any

BSD 2000-08-12 1

GETHOSTBYNAME(3) Linux Programmer’s Manual GETHOSTBYNAME(3)

or all of the name server named(8), a broken out line from /etc/hosts, and the Network Information Service
(NIS or YP), depending upon the contents of the order line in /etc/host.conf. (See resolv+(8)). The default
action is to query named(8), followed by /etc/hosts.

The hostent structure is defined in <netdb.h> as follows:

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses */

}
#define h_addr h_addr_list[0] /* for backward compatibility */

The members of the hostent structure are:

h_name
The official name of the host.

h_aliases
A zero-terminated array of alternative names for the host.

h_addrtype
The type of address; always AF_INET at present.

h_length
The length of the address in bytes.

h_addr_list
A zero-terminated array of network addresses for the host in network byte order.

h_addr The first address in h_addr_list for backward compatibility.

RETURN VALUE
The gethostbyname() and gethostbyaddr() functions return the hostent structure or a NULL pointer if an
error occurs. On error, the h_errno variable holds an error number.

ERRORS
The variable h_errno can have the following values:

HOST_NOT_FOUND
The specified host is unknown.

NO_ADDRESS or NO_DAT A
The requested name is valid but does not have an IP address.

NO_RECOVERY
A non-recoverable name server error occurred.

TRY_AGAIN
A temporary error occurred on an authoritative name server. Try again later.

FILES
/etc/host.conf

resolver configuration file

/etc/hosts
host database file

CONFORMING TO
BSD 4.3.

BSD 2000-08-12 2

GETHOSTBYNAME(3) Linux Programmer’s Manual GETHOSTBYNAME(3)

NOTES
The SUS-v2 standard is buggy and declares the len parameter of gethostbyaddr() to be of type size_t.
(That is wrong, because it has to be int, and size_t is not. POSIX 1003.1-2001 makes it socklen_t, which is
OK.)

The functions gethostbyname() and gethostbyaddr() may return pointers to static data, which may be
overwritten by later calls. Copying the struct hostent does not suffice, since it contains pointers - a deep
copy is required.

Glibc2 also has a gethostbyname2() that works like gethostbyname(), but permits to specify the address
family to which the address must belong.

Glibc2 also has reentrant versions gethostbyname_r() and gethostbyname2_r(). These return 0 on suc-
cess and nonzero on error. The result of the call is now stored in the struct with address ret. After the call,
*result will be NULL on error or point to the result on success. Auxiliary data is stored in the buffer buf of
length buflen. (If the buffer is too small, these functions will return ERANGE.) No global variable
h_errno is modified, but the address of a variable in which to store error numbers is passed in h_errnop.

POSIX 1003.1-2001 marks gethostbyaddr() and gethostbyname() legacy, and introduces

struct hostent *getipnodebyaddr (const void *restrict addr,
socklen_t len, int type, int *restrict error_num);

struct hostent *getipnodebyname (const char *name,
int type, int flags, int *error_num);

SEE ALSO
resolver(3), hosts(5), hostname(7), resolv+(8), named(8)

BSD 2000-08-12 3

FOPEN(3) Linux Programmer’s Manual FOPEN(3)

NAME
fopen, fdopen, freopen − stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char *path, const char *mode);
FILE *fdopen(int fildes, const char *mode);
FILE *freopen(const char *path, const char *mode, FILE *stream);

DESCRIPTION
The fopen function opens the file whose name is the string pointed to by path and associates a stream with
it.

The argument mode points to a string beginning with one of the following sequences (Additional characters
may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned at the beginning
of the file.

w+ Open for reading and writing. The file is created if it does not exist, otherwise it is truncated. The
stream is positioned at the beginning of the file.

a Open for appending (writing at end of file). The file is created if it does not exist. The stream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it does not exist.
The stream is positioned at the end of the file.

The mode string can also include the letter ‘‘b’’ either as a last character or as a character between the char-
acters in any of the two-character strings described above. This is strictly for compatibility with ANSI
X3.159-1989 (‘‘ANSI C’’) and has no effect; the ‘‘b’’ is ignored on all POSIX conforming systems, includ-
ing Linux. (Other systems may treat text files and binary files differently, and adding the ‘‘b’’ may be a
good idea if you do I/O to a binary file and expect that your program may be ported to non-Unix environ-
ments.)

Any created files will have mode S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH
(0666), as modified by the process’ umask value (see umask(2).

Reads and writes may be intermixed on read/write streams in any order. Note that ANSI C requires that a
file positioning function intervene between output and input, unless an input operation encounters end-of-
file. (If this condition is not met, then a read is allowed to return the result of writes other than the most
recent.) Therefore it is good practice (and indeed sometimes necessary under Linux) to put an fseek or
fgetpos operation between write and read operations on such a stream. This operation may be an apparent
no-op (as in fseek(..., 0L, SEEK_CUR) called for its synchronizing side effect.

Opening a file in append mode (a as the first character of mode) causes all subsequent write operations to
this stream to occur at end-of-file, as if preceded by an

fseek(stream,0,SEEK_END);
call.

The fdopen function associates a stream with the existing file descriptor, fildes. The mode of the stream
(one of the values "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor.
The file position indicator of the new stream is set to that belonging to fildes, and the error and end-of-file
indicators are cleared. Modes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream created by fdopen is closed. The result of applying fdopen to a
shared memory object is undefined.

The freopen function opens the file whose name is the string pointed to by path and associates the stream

BSD MANPAGE 2002-01-03 1

FOPEN(3) Linux Programmer’s Manual FOPEN(3)

pointed to by stream with it. The original stream (if it exists) is closed. The mode argument is used just as
in the fopen function. The primary use of the freopen function is to change the file associated with a stan-
dard text stream (stderr, stdin, or stdout).

RETURN VALUE
Upon successful completion fopen, fdopen and freopen return a FILE pointer. Otherwise, NULL is
returned and the global variable errno is set to indicate the error.

ERRORS
EINVAL

The mode provided to fopen, fdopen, or freopen was inv alid.

The fopen, fdopen and freopen functions may also fail and set errno for any of the errors specified for the
routine malloc(3).

The fopen function may also fail and set errno for any of the errors specified for the routine open(2).

The fdopen function may also fail and set errno for any of the errors specified for the routine fcntl(2).

The freopen function may also fail and set errno for any of the errors specified for the routines open(2),
fclose(3) and fflush(3).

CONFORMING TO
The fopen and freopen functions conform to ANSI X3.159-1989 (‘‘ANSI C’’). The fdopen function con-
forms to IEEE Std1003.1-1988 (‘‘POSIX.1’’).

SEE ALSO
open(2), fclose(3), fileno(3)

BSD MANPAGE 2002-01-03 2

CONNECT(2) Linux Programmer’s Manual CONNECT(2)

NAME
connect − initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd , const struct sockaddr *serv_addr, socklen_t addrlen);

DESCRIPTION
The file descriptor sockfd must refer to a socket. If the socket is of type SOCK_DGRAM then the
serv_addr address is the address to which datagrams are sent by default, and the only address from which
datagrams are received. If the socket is of type SOCK_STREAM or SOCK_SEQPACKET, this call
attempts to make a connection to another socket. The other socket is specified by serv_addr, which is an
address (of length addrlen) in the communications space of the socket. Each communications space inter-
prets the serv_addr parameter in its own way.

Generally, connection-based protocol sockets may successfully connect only once; connectionless protocol
sockets may use connect multiple times to change their association. Connectionless sockets may dissolve
the association by connecting to an address with the sa_family member of sockaddr set to AF_UNSPEC.

RETURN VALUE
If the connection or binding succeeds, zero is returned. On error, −1 is returned, and errno is set appropri-
ately.

ERRORS
The following are general socket errors only. There may be other domain-specific error codes.

EBADF
The file descriptor is not a valid index in the descriptor table.

EFAULT
The socket structure address is outside the user’s address space.

ENOTSOCK
The file descriptor is not associated with a socket.

EISCONN
The socket is already connected.

ECONNREFUSED
No one listening on the remote address.

ETIMEDOUT
Timeout while attempting connection. The server may be too busy to accept new connections.
Note that for IP sockets the timeout may be very long when syncookies are enabled on the server.

ENETUNREACH
Network is unreachable.

EADDRINUSE
Local address is already in use.

EINPROGRESS
The socket is non-blocking and the connection cannot be completed immediately. It is possible to
select(2) or poll(2) for completion by selecting the socket for writing. After select indicates
writability, use getsockopt(2) to read the SO_ERROR option at level SOL_SOCKET to deter-
mine whether connect completed successfully (SO_ERROR is zero) or unsuccessfully
(SO_ERROR is one of the usual error codes listed here, explaining the reason for the failure).

EALREADY
The socket is non-blocking and a previous connection attempt has not yet been completed.

Linux 2.2 1998-10-03 1

CONNECT(2) Linux Programmer’s Manual CONNECT(2)

EAGAIN
No more free local ports or insufficient entries in the routing cache. For PF_INET see the
net.ipv4.ip_local_port_range sysctl in ip(7) on how to increase the number of local ports.

EAFNOSUPPORT
The passed address didn’t hav e the correct address family in its sa_family field.

EACCES, EPERM
The user tried to connect to a broadcast address without having the socket broadcast flag enabled
or the connection request failed because of a local firewall rule.

CONFORMING TO
SVr4, 4.4BSD (the connect function first appeared in BSD 4.2). SVr4 documents the additional general
error codes EADDRNOTAVAIL, EINVAL, EAFNOSUPPORT, EALREADY, EINTR, EPRO-
TOTYPE, and ENOSR. It also documents many additional error conditions not described here.

NOTE
The third argument of connect is in reality an int (and this is what BSD 4.* and libc4 and libc5 have).
Some POSIX confusion resulted in the present socklen_t. The draft standard has not been adopted yet, but
glibc2 already follows it and also has socklen_t. See also accept(2).

BUGS
Unconnecting a socket by calling connect with a AF_UNSPEC address is not yet implemented.

SEE ALSO
accept(2), bind(2), listen(2), socket(2), getsockname(2)

Linux 2.2 1998-10-03 2

BIND(2) Linux Programmer’s Manual BIND(2)

NAME
bind − bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int bind(int sockfd , struct sockaddr *my_addr, socklen_t addrlen);

DESCRIPTION
bind gives the socket sockfd the local address my_addr. my_addr is addrlen bytes long. Traditionally, this
is called “assigning a name to a socket.” When a socket is created with socket(2), it exists in a name space
(address family) but has no name assigned.

It is normally necessary to assign a local address using bind before a SOCK_STREAM socket may
receive connections (see accept(2)).

The rules used in name binding vary between address families. Consult the manual entries in Section 7 for
detailed information. For AF_INET see ip(7), for AF_UNIX see unix(7), for AF_APPLETALK see
ddp(7), for AF_PACKET see packet(7), for AF_X25 see x25(7) and for AF_NETLINK see netlink(7).

RETURN VALUE
On success, zero is returned. On error, −1 is returned, and errno is set appropriately.

ERRORS
EBADF

sockfd is not a valid descriptor.

EINVAL
The socket is already bound to an address. This may change in the future: see linux/unix/sock.c
for details.

EACCES
The address is protected, and the user is not the super-user.

ENOTSOCK
Argument is a descriptor for a file, not a socket.

The following errors are specific to UNIX domain (AF_UNIX) sockets:

EINVAL
The addrlen is wrong, or the socket was not in the AF_UNIX family.

EROFS
The socket inode would reside on a read-only file system.

EFAULT
my_addr points outside the user’s accessible address space.

ENAMETOOLONG
my_addr is too long.

ENOENT
The file does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix is not a directory.

EACCES
Search permission is denied on a component of the path prefix.

Linux 2.2 1998-10-03 1

BIND(2) Linux Programmer’s Manual BIND(2)

ELOOP
Too many symbolic links were encountered in resolving my_addr.

BUGS
The transparent proxy options are not described.

CONFORMING TO
SVr4, 4.4BSD (the bind function first appeared in BSD 4.2). SVr4 documents additional EADDRNO-
TAVAIL, EADDRINUSE, and ENOSR general error conditions, and additional EIO and EISDIR Unix-
domain error conditions.

NOTE
The third argument of bind is in reality an int (and this is what BSD 4.* and libc4 and libc5 have). Some
POSIX confusion resulted in the present socklen_t. See also accept(2).

SEE ALSO
accept(2), connect(2), listen(2), socket(2), getsockname(2), ip(7), socket(7)

Linux 2.2 1998-10-03 2

	Socket (2)
	Packet (7)
	Write (2)
	Printf (3)
	Shutdown (2)
	Read (2)
	Gethostbyname (3)
	Fopen (3)
	Connect (2)
	Bind (2)

