
READ(2) Linux Programmer’s Manual READ(2)

NAME
read − read from a file descriptor

SYNOPSIS
#include <unistd.h>

ssize_t read(int fd , void *buf , size_t count);

DESCRIPTION
read() attempts to read up to count bytes from file descriptor fd into the buffer starting at buf .

If count is zero, read() returns zero and has no other results. If count is greater than SSIZE_MAX, the
result is unspecified.

RETURN VALUE
On success, the number of bytes read is returned (zero indicates end of file), and the file position is
advanced by this number. It is not an error if this number is smaller than the number of bytes requested;
this may happen for example because fewer bytes are actually available right now (maybe because we were
close to end-of-file, or because we are reading from a pipe, or from a terminal), or because read() was
interrupted by a signal. On error, −1 is returned, and errno is set appropriately. In this case it is left unspec-
ified whether the file position (if any) changes.

ERRORS
EINTR

The call was interrupted by a signal before any data was read.

EAGAIN
Non-blocking I/O has been selected using O_NONBLOCK and no data was immediately avail-
able for reading.

EIO I/O error. This will happen for example when the process is in a background process group, tries to
read from its controlling tty, and either it is ignoring or blocking SIGTTIN or its process group is
orphaned. It may also occur when there is a low-level I/O error while reading from a disk or tape.

EISDIR
fd refers to a directory.

EBADF
fd is not a valid file descriptor or is not open for reading.

EINVAL
fd is attached to an object which is unsuitable for reading.

EFAULT
buf is outside your accessible address space.

Other errors may occur, depending on the object connected to fd . POSIX allows a read that is interrupted
after reading some data to return −1 (with errno set to EINTR) or to return the number of bytes already
read.

CONFORMING TO
SVr4, SVID, AT&T, POSIX, X/OPEN, BSD 4.3

RESTRICTIONS
On NFS file systems, reading small amounts of data will only update the time stamp the first time, subse-
quent calls may not do so. This is caused by client side attribute caching, because most if not all NFS
clients leave atime updates to the server and client side reads satisfied from the client’s cache will not cause
atime updates on the server as there are no server side reads. UNIX semantics can be obtained by disabling
client side attribute caching, but in most situations this will substantially increase server load and decrease
performance.

Many filesystems and disks were considered to be fast enough that the implementation of O_NONBLOCK
was deemed unneccesary. So, O_NONBLOCK may not be available on files and/or disks.

Linux 2.0.32 1997-07-12 1



READ(2) Linux Programmer’s Manual READ(2)

SEE ALSO
close(2), fcntl(2), ioctl(2), lseek(2), readdir(2), readlink(2), select(2), write(2), fread(3), readv(3)

Linux 2.0.32 1997-07-12 2


